
Ingredient Lens

CS492 Section A

Spring 2024

Jack Berkowitz

Dmitry Bezborodov

Andrew Catapano

John Costa

Computer Science Program

Monmouth University

Table of Contents

1. Introduction..3
1.1 Background..3
1.2 Potential Impact... 4

2. Related Work..5
2.1 AI-Based Image Recognition... 5

2.1.1 Amazon Rekognition:..6
2.2 Amazon Web Services...8

2.2.1 Amazon S3... 8
2.2.2 DynamoDB..9
2.2.3 Amazon Amplify..10

2.3 Natural Language Processing..11
2.3.1 OpenAI.. 11

3. Design and Implementation..13
3.1 UI Design... 13

3.1.1 Desktop UI.. 13
3.1.2 Mobile UI...20

3.2 Front and Backend Design.. 20
3.2.1 Desktop Frontend... 21
3.2.2 Mobile Frontend..22
3.2.3 APIs.. 22
3.2.4 Storage Units.. 23
3.2.5 Side Packages..24
3.2.6 CI/CD.. 25

3.3 Implementation.. 25
3.3.1 Layers... 25
3.3.2 Lambda Functions.. 28

4. Conclusion and Future Work..39
References...40

1. Introduction

Ingredient Lens is an artificial intelligence (AI) based application that allows the user to

upload a picture of a food dish. Then the AI recognizes the dish in the photo and outputs a recipe

on how to make it. This application was implemented using a combination of AWS Services,

such as Amplify, S3, Rekognition, and API Gateways, React JS, the OpenAI API, Python code,

and Next UI.

1.1 Background

AI has seen a surge in the computer science world, reshaping the way we use technology

and creating a more complex future. AI is an extremely powerful tool that can improve all types

of industries by empowering machines to perform tasks that were never thought possible. This

project’s main goal is to identify the capabilities of AI and use those ideas to implement a

relatively simple yet useful application.

Ingredient Lens leverages AI’s limitless capabilities by taking advantage of AI

technologies including computer vision and natural language processing to provide accurate

image recognition of dishes and AI-generated recipes to its users. Its purpose is to make it easier

for users to cook food that they have never made before. It also reduces the confusion of cooking

by providing easy recipes for users to follow. When it comes to achieving this goal, Ingredient

Lens has many specific use cases. The first use case can be when the user is sitting at a restaurant

and wants to get the recipe of the dish that he or she was served. Another use case can be if the

user saw an interesting photo of the dish on social media and would like to learn more about it

and how to make it. In these use cases, Ingredient Lens can be used as an effective tool to satisfy

the user’s curiosity and provide useful cooking information.

1.2 Potential Impact

Ingredient Lens has the potential to provide many benefits to its users. These benefits can

improve their lives by teaching them new skills and knowledge that can improve their

self-esteem.

The first benefit is improved cooking skills. Since the user can upload an image of any

dish and receive a step-by-step recipe on how to make it, they can improve their cooking skills

by trying to cook dishes they have never cooked before. Depending on the dish, they could also

be introduced to new ingredients or cooking techniques that they have never used.

The second benefit is better cultural knowledge. Ingredient Lens can expose users to the

food of many cultures around the world by giving them guides on how to cook foreign dishes.

Even if a user doesn’t recognize the dish they want to make, the application will recognize it for

them, satisfying their curiosity and allowing them to broaden their culinary horizons.

The third benefit is time efficiency. Ingredient Lens can improve time efficiency by

allowing the user to upload a photo of a dish to receive a good recipe rather than having them

scour the web for one. This will allow them to jump right into gathering ingredients and cooking

rather than exhausting themselves searching for the perfect recipe online.

The fourth and final benefit is saving money. Once the user knows how to cook the

dishes they could find in restaurants through Ingredient Lens, they no longer have to spend the

extra money to go out to a restaurant to get their favorite complex dishes. This allows them to

save their money for other things.

2.Related Work

Artificial intelligence (AI) is “the theory and development of computer systems able to

perform tasks that normally require human intelligence, such as visual perception, speech

recognition, decision-making, and translation between languages.” [1] AI has become one of the

main focuses of computer science and software engineering research in the present day and

keeps advancing everyday to develop the capabilities to perform tasks that were never thought

possible. This chapter will introduce the foundation of research focused on the development of

the AI-driven food recognition and recipe generation application created in this project.

2.1 AI-Based Image Recognition

“Computer vision is a field of artificial intelligence (AI) that enables computers and

systems to derive meaningful information from digital images, videos, and other visual inputs.”

[2] One application of computer vision comes in the form of AI-based image recognition. Image

recognition allows software to correctly identify anything in digital images. There are two

approaches when it comes to the development of image recognition software. “The conventional

computer vision approach is a sequence of image filtering segmentation, feature extraction, and

rule-based classification.” [3] However, developing such a pipeline requires a lot of time,

expertise, and manual tweaking. [3] The other approach is the use of machine and deep learning

in developing image recognition software. Rather than using a combination of all computer

vision applications, this approach uses algorithms to train image recognition models based on

large, categorized datasets of images. This approach doesn’t require as expensive hardware and

has the potential to provide better performance [3]. It is also much simpler to use, requiring

coding knowledge rather than expertise in computer vision. There are also many model

making/training tools openly available to the public, such as Amazon Rekognition, that

streamline the process for the user.

2.1.1 Amazon Rekognition:

Rekognition is an AWS service/tool that can be used “to easily add image and video

analysis to AWS applications.” [4] Within Rekognition, Amazon provides a large pretrained

model that can recognize a multitude of objects. As can be seen in Figure 1, Amazon’s pretrained

model is able to recognize everything present in the image including each car’s wheels, the

person riding the skateboard, and the building on the left. While this model is very powerful,

Rekognition also provides the user with the capabilities to train their own finely-tuned models

using Amazon’s training algorithms. Using Rekognition’s Custom Labels, the user can upload

their own refined dataset to train their own model.

Figure 1: Capabilities of Pretrained Rekognition

To get started with using Custom Labels, first, one has to create an S3 bucket on their

AWS account. Once the S3 bucket is created, the user can create a project in the Rekognition

Custom Labels console. This project will store everything the user needs to train their model

including their dataset of images they wish to recognize and the model itself. After the project

has been created, the user will be brought to the project’s home page. Within the homepage, the

user is able to begin uploading their data and training their model.

The first step to training a model is creating the dataset the model will be trained off of.

When creating a dataset, Rekognition allows the user to either upload one large dataset that will

be used for training and testing or two separate datasets for each purpose. These datasets can

either be imported from the user’s PC or uploaded to and imported from the user’s S3 bucket.

Once a dataset is uploaded, the user can then generate labels to describe what is found in each

image. Labels can be generated in two ways. The first involves the user organizing their images

into folders for each object they would like to recognize and generating the labels automatically

based on each folder’s name. This approach is best for images with one object in each photo. The

second allows the user to upload a folder of uncategorized images that they will manually label.

This approach is best if the user is using images that include multiple objects.

After the dataset is uploaded and labeled, the model can finally be trained. Training

models in Rekognition is as easy as a click of a button. If the user uploaded two separate datasets

for training and testing, the training will begin immediately, but if the user is using one large

dataset for both, Rekognition will split the data using 80% for training and 20% for testing then

begin training. The speed of training models in Rekognition is efficient, but varies based on the

size of the dataset and how many labels the user wishes to recognize.

Finally, once the model is trained, the user can evaluate it to see if it requires more

training. When evaluating a model to see if it is ready for use, Rekognition provides several

useful metrics to see how the model is performing. The precision of a model “is the fraction of

correct predictions over all model predictions at the assumed threshold for an individual label.”

[5] A model with high precision is cautious in making predictions and will only identify an

object in a photo if it is sure it knows what it is, resulting in fewer false positives. [6] The recall

of a model “is the fraction of your test set labels that were predicted correctly above the assumed

threshold.” [5] A model with high recall is able to identify each custom label correctly when it's

present in the testing dataset of images. [5] Each of these values is a fraction from 0 to 1.0 so a

well trained model will have close to a 1.0 for both evaluation metrics. Once the user is happy

with their model, they can deploy it using Python or console commands and the model’s Amazon

Resource Name (ARN).

2.2 Amazon Web Services

“Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted

cloud.” [7] AWS offers a wide range of cloud-based products “from infrastructure technologies

like compute, storage, and databases–to emerging technologies, such as machine learning and

artificial intelligence.” [7] These products/tools are easily accessible within the AWS system and

have a wide range of services that can be used to support a complete full stack web development

cycle and to create innovative products. Some important AWS services for this project include

Amazon S3, DynamoDB, Amazon Amplify, and Amazon Rekognition as previously discussed.

2.2.1 Amazon S3

Amazon S3 is the cloud storage that will be heavily used to link the different AWS

services together and share the files between them. “Amazon Simple Storage Service (Amazon

S3) is an object storage service offering industry-leading scalability, data availability, security,

and performance. It includes cost-effective storage classes and easy-to-use management features

that can optimize costs, organize data, and configure fine-tuned access controls to meet specific

business, organizational, and compliance requirements.” [8] Amazon S3 also provides a fast and

accessible Python SDK that is easy to use and can be used by other Amazon services to access

any related files. The code snippets below are examples of how a user can upload and download

files from S3.

Uploading a file:

import boto3
client = boto3.client('s3')
with open("mnist.py", 'rb') as file:
file_contents = file.read()

response = client.put_object(
Body=file_contents,
Bucket='examplebucket-8232936',
Key='Media/mnist.py',

)

Downloading the file:

response = client.download_file(
Bucket='examplebucket-8232936',
Key='Media/mnist.py',
Filename=r'A:/algorithm/DishRecognizerSP/python.py'

)

2.2.2 DynamoDB

DynamoDB is a serverless, NoSQL database that is highly scalable and can be used to

store information. DynamoDB provides a simple Python API that allows data to be fetched from

and sent to the database by the website backend. It is also compatible with Amazon S3’s cloud

storage. The code snippet below uses the boto3 package to call the DynamoDB API using

Python.

Return the list of tables:

import boto3
from botocore.exceptions import NoCredentialsError
try:

Initialize the DynamoDB client
client = boto3.client('dynamodb', region_name='us-east-1')
List tables
response = client.list_tables(Limit=10)
Print the list of table names
print("Table Names:")
for table_name in response['TableNames']:
print(table_name)

except NoCredentialsError:
print("AWS credentials not found. Please configure your credentials.")

2.2.3 Amazon Amplify

Amazon Amplify is used to handle the app from where the model would be accessible to

users. Amplify provides the capabilities to host cloud-based web pages on Amazon servers, that

is also compatible with other Amazon services that are used for a full-stack web development

setup. The front end of the web app can be easily connected through Github and APIs and

authentication can be handled by using other Amazon services (Lambda, API Gateway) that

Amplify manages in the background. For the backend, Amplify will also use S3 and DynamoDB

as primary storage tools. Amplify is also cost-efficient, as it allows the user to run an app for free

for 12 months and then only pay for the time that the server is run.

Amplify uses Lambda functions, which are individual components that are designed to do

one designated task and can be highly scalable. Every function can be custom-adjusted to use as

much or as little memory as it needs. Lambda functions can be particularly useful when working

with big chunks of data, small user requests, and model training and deployment. It matches the

structure of this project since it will be working with big chunks of data, small user requests, and

model training. So customization of the API will allow you to not pay any extra for the

computational power that is not used.

2.3 Natural Language Processing

“A large language model (LLM) is a deep learning algorithm that can perform a variety of

natural language processing (NLP) tasks.” [9] LLMs are used to analyze and comprehend one’s

speech in order to generate a logical response to a user’s query. This is achieved through training

a complex model using enormous quantities of data and allowing it to infer relationships between

words within the text. [10] With enough data and training, the model will then be able to predict

what words would most likely follow a user’s input to give the perfectly crafted response to any

query the user might think of. One service that allows the use of their LLMs is OpenAI.

2.3.1 OpenAI

OpenAI is an AI research and development company that hosts some of the best large

language models for text processing and generation. Through OpenAI’s website, users can

interact with their models online through services such as ChatGPT and DALL⋅E. Registered

users are also able to use OpenAI’s API in order to incorporate their models into their own

applications. In order to use the API in Python code, the user must install and import the openai

library. This library provides all of the necessary functions and capabilities for communicating

with the API to take advantage of their models. Once installed and imported into the user’s

project, they can call the API in as little as 4 lines of code.

Using gpt-3.5-turbo in Python [6]:

import openai
Your OpenAI account’s secret key.
openai.api_key = ‘YOUR_API_KEY’
Prompt for the model.
prompt = ‘Hello, how are you today?”
completion = openai.ChatCompletion.create(

model=‘gpt-3.5-turbo’,
messages=[{‘role’:‘user’,

‘content’:prompt}]
print(completion.choices[0].message.content)

In order to use the API in their programs, the user must first generate a secret API key on

their OpenAI account that will be used to grant them access. This key is used to set the value of

openai.api_key and tracks which account is using the service so that they can make sure the user

is authorized to call the API. Once the API key is set, the user can then begin sending prompts to

the API using the openai.ChatCompletion.create function. This function takes in the model the

user wishes to use and multiple messages/prompts the model must respond to as parameters.

Then, it returns the model’s responses. For chat completion models, the user is able to choose

from the GPT’s as well as a few other models that are hosted on OpenAI. In the coding snippet

above, the ‘gpt-3.5-turbo’ model is used because it is the best and cheapest model available on

the free tier of ChatGPT. For messages, the user must include the role and the content of the

message. The role of the message determines how the model will react to it. For example, if the

role of the message is “user”, the model will respond to the user’s query like they are using

ChatGPT, but if the role of the message is “system”, it will determine the behavior of the model.

The message content is the actual question of instruction the user is asking the model. An

example of a message from the “user” role can be seen in the code snippet above where the user

asks the model how they are. An example of a message from the “system” role can be “You are a

terrible assistant”. This will prompt the model to provide bad answers to the user’s queries.

3.Design and Implementation

3.1 UI Design

3.1.1 Desktop UI

The first impression of any website is important. For the final version of the app, we

decided to use NextUI for the design of the application in order to achieve a more modernized,

appealing design. The NextUI interface design framework allows users to incorporate a wide

range of components that can transform the overall look of the website. It also gives users the

liberty of combining many other tools like Tailwind, React, and Next.js. To accomplish this, all

of the code is stored as Typescript files. This allows us to use pre-made methods in the NextUI

liberty that look more eye-catching to the users. This also allows for a more in depth user

experience, implementing features such as light and dark mode for the website that allows the

user to change the website’s theme with the click of a button.

In addition to NextUI, Next.js was also incorporated into the final iteration of the

website. Next.js is a React framework that allows developers to create full-stack web

applications by extending and integrating both React features and Javascript tooling. It supports

dynamic HTML and CSS streaming, allowing the website to update itself in real-time as changes

are made. Additionally, it features built-in optimizations for things like fonts, images, and scripts

which automatically improve the website. There are also server-side features that improve the

website’s performance, like advanced route handling and data fetching. Utilizing NextUI and

Next.js together allowed us to create a significantly more powerful and flexible website

compared to the first draft which only used basic HTML and CSS.

Home Page

When a user first logs onto Ingredient Lens, they are greeted with our home page (Figure

5). This page welcomes the user to the website, contains a button that leads to the main Image

Upload page of the website, and includes the navigation bar which the user can use to navigate to

each page on the website. This navigation bar contains our logo, the name of the website, links to

all website pages, a Github icon that leads to the project’s Github, a button that switches between

light and dark mode, and a search bar that currently has no functionality. This navigation bar is

also present on every other page on the website. The homepage is coded in TypeScript and is

composed of common HTML classes and NextUI classes.

Figure 5: Ingredient Lens Homepage

Docs Page

When a user clicks the “Docs” button on the navbar, it brings them to the Docs page of

the website (Figure 6). This page is composed of NextUI Cards that tell users about how

Ingredient Lens operates. Each Card has a link, a heading, and subtext if needed. These cards are

assembled in a visually appealing grid format. When clicked, each card will lead the user to the

webpage of the tool used. The Docs page is also coded in TypeScript.

Figure 6: Docs Page

Popular Dishes Page

When a user clicks “Popular Dishes” on the navbar, it leads them to the Popular Dishes

page (Figure 7). The Popular Dishes page lays out several example images that the user can

download and upload to the Image Upload page to generate recipes. This page is composed of a

list of NextUI Cards each with an image and a CardFooter explaining what the picture is of.

When an image is clicked, it is downloaded to the user’s computer to be available to upload to

the Image Upload page. The Popular Dishes page is also coded in TypeScript.

Figure 7: Popular Dishes Page

Image Upload Page

When a user clicks “Image Upload” on the navbar, it leads them to the Image Upload

page. When a user first enters the Image Upload page, it is pretty barebones (Figure 8). At first it

is only composed of two NextUI Cards, one with file upload and generate label buttons and one

with a line of text stating that it is where the outputted recipe will appear.

Figure 8: Initial Image Upload Page

Clicking the “Choose File” button opens up the file directory on the user’s PC and allows

them to choose an image to upload. Once a file is chosen, the image appears in an NextUI Image

class of fixed size below the bar card (Figure 9).

Figure 9: Website View When an Image is Uploaded

Once an image is uploaded, the user can click the “Generate Labels” button to send the

image to our API Gateway to trigger the S3 and Amazon Rekognition Lambda functions. The

labels gathered from the Rekognition Lambda will then be listed next to the image in a NextUI

Listbox and clickable by the user. Once a label is clicked, it turns green and the “Generate

Recipe” button will appear allowing the user to start the recipe generation process (Figure 10).

Figure 10: Website View after Label Generation and Selection

When the user clicks the “Generate Recipe” button, the website will call the OpenAI

Lambda function directly and the OpenAI API will begin generating the recipe. Since the

OpenAI API is sometimes slow, a loading bar will appear in the Recipe Output Card signifying

that it is working (Figure 11).

Figure 11: Loading Bar

Once the recipe is generated, the loading bar disappears and the Recipe Output Card is

filled with the ingredients and steps to make the dish (Figure 12). Ingredients are displayed in a

NextUI Table and Steps are displayed in a NextUI Accordion. Ingredients are automatically

viewable, but the user has to click each fold/step in the Accordion to view the contents of each

step.

Figure 12: Recipe View on Website

About Page

When a clicks “About” on the navbar, they are led to the About page (Figure 13). This

page is very simple and only contains some basic information about our team such as our names

and project. This page is the only webpage that doesn’t include any NextUI elements and is just

coded in using basic HTML classes with Typescript.

Figure 13: About Page

Login Page

The login page allows the user to sign up for IngredientLens and create an account to

keep their information about dietary needs allergies and history of generated recipes. For now,

we didn’t focus on the specific user information, so the user just needs to input an email, and

password which are stored in the database in hashed secured format.

History Page

The history page provides the user with a storage of their past generated recipes that they

can revisit. It shows the date of the generated history item, the image of the uploaded image and

labels that were assigned to the image. Also provides the generated step-by-step process of the

recipe of the selected dish, as well as the list of ingredients required for that dish.

User Page

The user page holds important information about the user, where they can update the

information about their dietary needs and allergies. This page can also be used in order to update

user’s personal information, such as name, email, and passwords.

3.1.2 Mobile UI

The first impression of any mobile application is important. For the final version of the

mobile app, we decided to use React Native + Expo in order to achieve an appealing design.

React Native and Expo come with a variety of components suitable for designing a mobile

interface for both iOS and Android. The use of React Native also allowed us to easily connect

our mobile frontend to our preexisting AWS backend. All of the code for the frontend is stored in

either TypeScript or JavaScript files. This allows us to use pre-made methods in React Native

and Expo libraries that are visually appealing and highly customizable. This also allows for a

more in depth user experience enabling the use of navigators to seamlessly transition between

pages.

Navigation:

For navigation throughout our app, we used a Drawer Navigator from the

react-navigation library. A drawer navigator is used to render a navigation drawer on the side of

the screen that can be opened and closed via gestures (swiping). Drawers are also highly

customizable allowing for a more modern navigation design.

Pages:
Our mobile app contains all of the pages found on the website adapted for use on a

mobile screen.

3.2 Front and Backend Design

Figure 14: Workflow Chart

The workflow of this project can be broken down into several sections. That includes

Frontend, which holds the UI/UX design that is presented to the user and runs the web server.

APIs that serve as a connection between frontend, side packages, and backend storage units.

Storage Units, that hold important files and information that is used in the project.

Side Packages, which are the outside software and tools that the project is using.

Continuous Integration/Continuous Delivery (CI/CD), which allows quick changes to the

project and in-place updates.

In this section, there will be a detailed implementation of the above workflow, the

challenges that were faced, and their solutions. Some of those approaches might not be optimal

or may require changes in the future. It will require proper maintenance and even though the

services that are in use are highly maintained, there might be better, more cost-efficient solutions.

3.2.1 Desktop Frontend

AWS Amplify allows users to run any type of React project on their Amazon server. By

creating a simple Node JS project that contains CreateRoot functions that are fetched from React,

Amplify is able to identify that as the root of the project, meaning that when the user goes to the

general Amplify link, that will be the page shown. React supports various bootstrap options that

will be used to create a UI. That approach allows users to apply all of the Object Oriented

Programming requirements, which are the main traits of the React application.

In addition, Amplify allows direct connection with GitHub, which allows for the CI/CD

approach, as all of the changes that will be made will automatically update the content of the

website. That only applies to the front end, and there are other options to implement CI/CD that

use GitActions. In addition, with Amplify, there is an easy way to add custom domains to the

project that will be used in the future.

3.2.2 Mobile Frontend

React Native is a JavaScript library used to build user interfaces (UIs) for native apps. It

can be used to create cross-platform applications that can be used on both Android and iOS. It

also provides developers with all of the tools needed to create complex, responsive UIs that can

interface with other code and APIs and enables fast iteration to see and test code changes in

real-time.

For our mobile app, we used React Native for our frontend design because our website

was already a React application. This allowed us to reuse most of the code to mimic the website’s

functionality in a mobile setting. Along with React, we used Expo. Expo is also an open-source

platform for making universal native apps for Android, iOS, and the web with JavaScript and

React. It contains libraries of components that can be added to React Native apps as well as

enables the use of Expo Go for real-time app testing. Expo also contained many useful libraries

to replace the libraries used on the website that were incompatible with React Native such as the

crypto module.

From our React Native + Expo app, we were able to connect to our AWS backend to

provide all of the functionality present on the website. The only main difference between the two

is the UI design and different libraries to access a user’s files and provide some backend

functionality.

3.2.3 APIs

APIs are what allow the front and backend to communicate and react to the user’s actions

by responding with corresponding information or running processes. The initial call of the API

happens with the front end, which then receives the information in JSON format and does some

action that updates the webpage for the user. For this project, two APIs were used, one custom

AWS API Gateway and the OpenAI API.

AWS API Gateways allow users to call Lambda functions from the front end using

simple HTTP protocol. In this case, the trigger for the functions is the request that was made to

the Gateway. Then, the Lambda function is executed. Our API Gateway handles four POST

requests each corresponding to a specific Lambda function, “dynamo-get”, “dynamo-put”,

“s3-upload”, and “rekognition”. Once a specific POST request is sent to the Gateway, it triggers

the corresponding Lambda to return a response.

The OpenAI API allows users to call OpenAI’s LLMs like gpt-3.5 to return a response to

a query to their own programs. The OpenAI API is used within the ChatGPT Lambda function to

return a recipe when queried to create one for the food that is recognized. This Lambda function

is the only one that is triggered directly rather than through our Gateway because there needed to

be a longer timeout window than the max for the Gateway since the OpenAI API takes longer

than 29 seconds to return a response.

Lambda functions can be written in any of the supported programming languages. For

simplicity, the main language used will be Python, version 3.8. When uploading the function, the

language, architecture, and function handler must be specified. That is integrated with GitHub

Actions which allows users to push any folder that has Python files. Members of our team can

easily push functions by specifying a path to the folder of files, function name, and path to the

starting function. This way it’s quick and easy to make updates or add new functions since every

part of the project is available on GitHub.

Furthermore, if a function requires any of the additional packages that need to be

installed, a Lambda layer can be connected to the functions. Layers serve as the functional code

that is used in different parts of the different functions. This lessens repeated code, as any

Lambda function can inherit code from a layer.

3.2.4 Storage Units

Storage units store the main information about the users and files that are used for

machine learning, specifically in Image Recognition. Those storage units can be accessible from

the Lambda functions. DynamoDB serves the purpose of the database:

email (primary key, string) - Used as a unique ID of a user, which is a user’s email address

Password (string) - Protected hashed password of the user

diet (string) - Used to keep track of the user’s dietary restrictions

allergies (string array) - Used to keep track of the user’s allergies that are selected from a

middle-size list of common allergies.

history ([historyElement{date: string, ImageHash: string, labels, string array recipe:

{ingredients: string array, steps: string array}} - holds the individual history of the generated

recipes by the user, which is in JSON format. Date is the date and time when the recipe was

generated. ImageHash holds the hash of the image that is stored in the s3 bucket. Labels are used

to store labels that were assigned by the model to the image. The recipe stores a recipe on the

selected label. Where ingredients are the set of ingredients generated and steps is a set of steps to

prepare the dish.

Our current S3 bucket is used to store user uploaded images to potentially use them for

model training, site statistics, and recipe storage in the future. The S3 path is assigned depending

on the image hash and user login. The easy way to access any image is by following the path:

general-bucket/<user-email-login>/<imageHash>.

3.2.5 Side Packages

As mentioned before, side packages and environment setup for Lambda functions are

done through the Lambda layers. Layers allow any package to be used in functions that inherit

from that layer.

The Docker container is used to set up all of the packages in one layer. In order to use a

Docker container, first, the Docker Image must be initialized. This image contains the

information on what type of packages and software must be initialized and which commands it

needs to perform. In a way, it can be explained as a very small computer that has a very specific

environment on it. In our case, it uses a Python Base image that is able to run Python code, then

the image looks at the requirements.txt file and runs the pip installment for each of the

requirements, which uploads all of the packages that will be used in the layer. Then, all of the

modules are zipped into one folder that will be used to upload to AWS. After the image is

created, the container starts its process by running it, executing all of the above requirements.

After that, the zip file that was created in the Docker container is fetched and uploaded to the

AWS server. This process is automated and can be performed through git actions, where

members of our team can just include layer name, description, and path to the requirements.txt

file. It will upload a created layer to the AWS server which is accessible through Lambda

functions.

3.2.6 CI/CD

With CI/CD, we want to make sure that if there are any changes that need to occur or any

bugs that need to be fixed, it can be done easily without issues. This way, when someone wants

to commit changes to the project, it will need to pass several checks before being approved.

Some of those checks are programmatic, which can be updated with the Lambda functions, or

human checks, where at least 2 team members need to approve the code to be integrated into the

project. This makes the development easy to control and very fast paced, because all of those

changes are happening in place. When changes are made, the Amplify server automatically looks

at the gitHub updates and can update the website on the spot.

With git actions, developers can easily automate processes that are repeated on a daily

basis such as creating Lambda functions, uploading side software, or cosmetic changes to the UI.

3.3 Implementation

3.3.1 Layers

Layers are implemented by using the Dockerfile along with git actions to dynamically

add and update the packages that the project uses in lambda functions. First, when git actions are

run, it sets up a git virtual machine, where it runs all of the code that allows creating package zip

file and uploads it to AWS Lambda server:

jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2

- name: Set up Docker
run: |
docker build --build-arg REQUIREMENTS_PATH=${{ github.event.inputs.path_to_req }} -t

lambda-layer .
docker run --name lambda-layer-container -v ${{ github.workspace }}:/app lambda-layer
docker cp lambda-layer-container:/app/layer.zip .
docker stop lambda-layer-container
docker rm lambda-layer-container

docker rm --force lambda-layer
working-directory: ${{ github.workspace }}

The Docker job is responsible for the creation of the docker container that will download

all of the required packages. docker build allows us to build an image of the container, docker

run runs the container and executes the code inside of it, and docker cp is responsible for copying

the zip file from the docker container to the local virtual machine run by git. The remaining

docker stop and docker rm commands clean the workspace because at this point docker finished

the task.

The content of the Docker file is responsible for creating the packages and zipping them

into one file, the comments in the code snippet explain in detail how this container works:

ARG REQUIREMENTS_PATH

Use the official Python runtime as the base image
FROM python:3.8-slim-buster

Set the working directory in the container
WORKDIR /app
Install any necessary dependencies
RUN apt-get update && \
apt-get install -y zip && \
rm -rf /var/lib/apt/lists/*

Copy the requirements file to the working directory
COPY $REQUIREMENTS_PATH .

Install the Python packages listed in requirements.txt
RUN pip install -r requirements.txt -t /opt/python/

Set the CMD to zip the installed packages into a layer
ENTRYPOINT ["/bin/sh", "-c", "cd /opt && zip -r9 /app/layer.zip ."]

$REQUIREMENTS_PATH variable is passed when creating the docker image, and is

referencing the path of the file with requirements in the GitHub repository. After the zip file with

the modules is created, the git virtual machine needs to push those packages into the layer on the

AWS server. The code snippet below pushes that file into the layer:

- name: Create AWS Lambda Layer
run: |
aws lambda publish-layer-version \
--layer-name ${{ github.event.inputs.layer_name }} \
--description "${{ github.event.inputs.description }}" \
--compatible-runtimes python3.8 \
--license-info "MIT" \
--zip-file fileb://layer.zip

env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
AWS_EC2_METADATA_DISABLED: true
AWS_DEFAULT_REGION: us-east-1

This code sets up the environment of AWS, where it fetches the access keys from the

GitHub secrets. After the region is set, the aws lambda publish-layer-version command publishes

the layer to aws, specifying the name of the layer, its description as well and the zip file that was

created by the docker container.

After all of those actions, the layer can be attached to any of the lambda functions that

use third-party packages. Next section lists some examples of the lambda functions that will be

using outside packages, which will be used as APIs for the project's front and back end.

3.3.2 Lambda Functions

(1) Amazon Rekognition

The Rekognition Lambda function takes the image that was uploaded and passes it to

Rekognition which returns the labels it recognized in the photo. Once called by the image

upload, the function receives the image’s base64 data and decodes it into bytes. Once decoded,

the image is passed to the detect_labels function(). After the labels recognized within the image

are gathered from detect_labels(), the ‘Name’ and the ‘Confidence’ for each label are extracted

and added to a json object which is appended to the handled_response array which is returned to

the webpage as in json format.

Rekognition Lambda Code:

import boto3
import urllib.request
import urllib.parse
import urllib.error
import base64

client = boto3.client(‘rekognition’)

def lambda_handler(event, context):
'''Demonstrates trigger that uses Rekognition APIs to detect labels in a
base64 image.
'''

image_bytes = base64.b64decode(event["b_image"], validate=True)

try:
Calls Rekognition DetectLabels API to detect labels in S3 object
response = detect_labels(image_bytes)

handled_response = []
for elem in list(response):
handled_response.append({
'name' : elem['Name'],
'confidence' : elem['Confidence']

})

Print response to console.
print(response)

return {
"labels": handled_response

}

except Exception as e:
print(e)
print("Error processing object.")
raise e

The detect_labels() function uses the Rekognition client to detect the objects recognized

in the uploaded photo. Within the request, the responses are limited to food and drink labels

using the GENERAL_LABELS and IMAGE_PROPERTIES features. These features allow the

user to limit pre-trained Rekognition’s dataset of labels to only include labels useful to Ingredient

Lens since a custom model hasn’t been trained yet. Once these features are added, the user can

add settings to the label detection such as “LabelExclusionFilters” and

“LabelCategoryInclusionFilters”. These are used to exclude certain labels from image detection

and limit the categories of labels that are recognized. Since Ingredient Lens only deals with food

and drinks, the “Food and Beverage” category is the only enabled one and the only things

excluded from that category are the generic food labels like “Food”, “Lunch”, “Snack”, etc..

Once the labels recognized within the image are generated, they are returned to be handled by

the rest of the Lambda function.

detect_labels() Function:

def detect_labels(image):
response = client.detect_labels(Image={'Bytes': image},
MaxLabels=10,
Features=["GENERAL_LABELS", "IMAGE_PROPERTIES"],
Settings={"GeneralLabels": {"LabelExclusionFilters": ["Food", "Dinner", "Lunch", "Meat", "Meal",

"Snack", "Beverage"], "LabelCategoryInclusionFilters":["Food and Beverage"]},
"ImageProperties": {"MaxDominantColors":10}}
)
return response["Labels"]

(2) OpenAI

The OpenAI Lambda function uses the output from the Amazon Rekognition Lambda to

prompt the OpenAI API to get a recipe based on what dish was recognized. Once called, the

function receives the label/food that was recognized, the user’s allergies, and the user’s dietary

restrictions and inserts it into a prompt which we engineered to generate recipes with the same

format no matter which food is inserted. Then, the function passes that prompt to the OpenAI

API through the openai.ChatCompletion.create() function using the gpt-3.5-turbo model.

Once the recipe is generated it is passed through several regex expressions to capture the

ingredients and recipe steps. In order to capture the ingredient, the expression used is '-\s\d?.*'

which captures the ingredients listed because they always begin with a ‘-’. In order to capture the

steps, there are several expressions used to capture the steps based on the output variation that is

generated. With our current prompt, there are two main recipe variations that are generated. The

first expression used is '\n\s+\d+\.(?!\sInstructions:)(?!\sDish\sName:\s)(?!\sIngredients:)(.+)'

which captures every step in a singular string given a recipe that numbers each step and section

of the recipe, “2. Ingredients”, “3. Instructions”, etc.. The second expression used is

r'\n\d+\.(.+)\n' which captures every step in a singular string given a recipe that only numbers

each step and not the recipe’s sections. This second expression is only triggered if the first

expression fails and captures nothing. Once the steps are captured in a singular string from either

expression, the string is split using the re.split() function which splits the string into an array of

each step contents. The pattern used to split the string is '\d+\.' which is a number with a period.

After all of the steps are gathered from the recipe, a for loop is used to iterate a step

number and strip each step of any extra spaces that surround the text. Each step and the current

step number are combined into a json object that is appended to the handled_steps array. After

all steps are handled, the handled_steps array is combined with the ingredients array into a json

object recipe_data which is returned to the webpage to be displayed.

In order for this function to run, an OpenAI API key was required. Since we are running

our website code on AWS through our GitHub repository, we couldn’t just upload the function

with an exposed API key so we had to find another way to import the key securely. Within AWS

Lambda functions, the user is able to set up environment variables that are exclusive to each

function. This allowed us to set up an environment with the variable access_key which contained

our API key. In order to import this information, we used the os Python library to access our key

for use in the function.

OpenAI Lambda Function Code:

import openai
import os
import json
import re

def lambda_handler(event, context):
Gets access key from environment variables.
openai.api_key = os.environ['access_key']

print(event)
print(event['body'])
body_dict = json.loads(event['body'])
label_value = body_dict.get('label')

allergies = body_dict.get('allergies')
diet = body_dict.get('diet')

allergies_string = ""
if allergies is not None:
allergies_string = " without "
for allergy in allergies:
allergies_string += str(allergy)
allergies_string += ", "

diet_string = ""
if diet is not None:
diet_string = " " + str(diet) + " "

prompt = "Generate a step-by-step recipe for " + diet_string + str(label_value) + allergies_string + """ in a
format suitable for display on a website. Include a list of ingredients and detailed instructions for each step.
Ensure the format is clear, consistent, and optimized for website display, with ingredients listed first
followed by sequential steps. Use the following format:

Recipe Prompt Format:

1. Dish Name: [Enter Dish Name]
2. Ingredients:
- [Ingredient 1]
- [Ingredient 2]
- [Ingredient 3]
- ...

3. Instructions:
1. [Step 1]
2. [Step 2]
3. [Step 3]
4. ..."""

Gets gpt-3.5-turbo's response to the prompt.
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role":"user",

"content":prompt}])
recipe = completion.choices[0].message.content
Prints and returns the response in json format.
print(recipe)

REGEX STUFF
ingredient_pattern = r'-\s\d?.*'
Find all matches of ingredients in the recipe
ingredients = re.findall(ingredient_pattern, recipe)
Display the captured ingredients
for ingredient in ingredients:
print(ingredient)

step_pattern = r'\n\s+\d+\.(?!\sInstructions:)(?!\sDish\sName:\s)(?!\sIngredients:)(.+)'
numbered_step_pattern = r'\n\d+\.(.+)\n'
Find all matches in the instruction text
steps = re.findall(step_pattern, recipe, re.DOTALL)
print(steps)

if len(steps) == 0:
steps = re.findall(numbered_step_pattern, recipe, re.DOTALL)

print(steps)

split_pattern = r'\d+\.'
splitSteps = re.split(split_pattern,steps[0])
print(splitSteps)
steps = splitSteps

handled_steps = []

for step in steps:
step_description = step.strip()

"""handled_steps.append({
'number': step_number,
'description': step_description,
#'parts': step_parts

})"""

handled_steps.append(step_description)
print(f"Step : {step_description}")
print()

recipe_data = {
'ingredients': ingredients,
'steps': handled_steps

}

response = {
'statusCode': 200,
'body': json.dumps(recipe_data)

}
return response

(3) S3

The S3 Lambda function connects the Amazon s3 file management system with the

website. Every time the user uploads an image to the website and presses “Generate”. The

website makes a call to that function and the image is stored in the database for future use in

training:

import boto3
from botocore.exceptions import ClientError
import uuid
import base64

def upload_file(event, context):
"""Upload a file to an S3 bucket

:param file_name: File to upload

:param bucket: Bucket to upload to
:param object_name: S3 object name. If not specified then file_name is used
:return: True if file was uploaded, else False
"""
Create a random Id
random_uuid = uuid.uuid4()

Decode the base64-encoded image data to bytes
image_bytes = base64.b64decode(event["b_image"], validate=True)

Extract the first 8 characters from the UUID
random_id = str(random_uuid)[:8]

Upload the file
s3_client = boto3.client('s3')
try:
response = s3_client.put_object(
Body=image_bytes,
Bucket=event["bucket"],
Key=event["key"],

)
return True

except ClientError as e:
return False

In short, the base64 image is passed into the function. After which the image is decoded

to regular bytes and a random 8-digit id is generated to assign it to the image to distinguish

between images in s3. Boto3 is an included library that any lambda function can use without a

layer, and with the permission for lambda to call s3 the function is able to run serverless.

(4) DynamoDB

DynamoDB functions are there to connect to the database. For now, the functions of the

database are separated into several functions of GET and PUT methods. However, once the

project reaches new ground, the Lambda function can be abstracted using PartiQL. Which will

allow us to do direct SQL queries to the database:

import boto3
import hashlib
import json
def lambda_handler(event, context):
"""Function returns the bool value depending if the user is registered or not in the
database given their login and password

:param login: email of the user
:param password: password of the user
:returns: Boolean of whether the user was found or not
"""
try:
#connect to the database
dynamodb = boto3.resource("dynamodb")
table_name = "LoginInfo"
table = dynamodb.Table(table_name)

response = table.get_item(Key={'email':event['login']})

sha256 = hashlib.sha256()
sha256.update(event['password'].encode('utf-8'))
hashed_password = sha256.hexdigest()

if(hashed_password == response["Item"]['password']):
status = True

else:
status = False

resp = {
'status' : status

}
return json.loads(json.dumps(resp))

except Exception as e:
data = {
'status' : False,
'error' : e

}
return json.loads(json.dumps(data))

The function first connects to the database and gets the row of the data if the user login

exists. Then, the function processes the user entered password to hash value and compares it with

the one on the database and if they match the return status is True. Otherwise the function returns

the status of False in any other scenario.

PUT Method Code:

try:
dynamodb = boto3.resource("dynamodb")
table_name = "LoginInfo"
table = dynamodb.Table(table_name)

sha256 = hashlib.sha256()
sha256.update(event['password'].encode('utf-8'))
hashed_password = sha256.hexdigest()

response = table.put_item(Item={"email": event['login'], "password":hashed_password},
ConditionExpression="attribute_not_exists(login)")

return {'exist': False}
except Exception as e:
print(e)
return {'exist': True,

'error': e}

The function connects to the database and converts the passed password into a hash value

for security reasons. Then, the function makes an attempt to put it into the database, but will only

do so if entered email does not exist in a database. Otherwise, the return statement will be True,

implying that there is a row with the given email in a database.

These functions are not in use in the current iteration of the website, but will be used next

semester to implement user accounts.

(5) Update History

The function is called when the recipe is generated and if a user is signed in to their

account. This means the information is not being stored if the user is in the guest mode. Data is

passed in the JSON format required by the DynamoDB boto3 library:

dynamodb = boto3.resource("dynamodb")
table_name = "LoginInfo"
table = dynamodb.Table(table_name)
response = table.get_item(

Key={
'email': str(event['login']),

},
ConsistentRead=True

)
item = response['Item']
if item:
Step 2: Update the array in the item
array_field_name = 'history' # Replace with the name of your array field
Initialize the array if it doesn't exist
item[array_field_name] = item.get(array_field_name, [])
Add a new dictionary to the array
item[array_field_name].append(event['historyItem'])
Step 3: Save the modified item back to DynamoDB
update_response = table.update_item(

Key={
'email': event['login'],

},
UpdateExpression=f'SET {array_field_name} = :newArray',
ExpressionAttributeValues={

':newArray': item[array_field_name],
},
ReturnValues='ALL_NEW', # Change as needed

)
updated_item = update_response.get('Attributes')
return {'status' : True, 'updated_item': updated_item}

Function connects to the database and if the history array already exists, it appends the

information to the existing array of history items and creates a new empty array if history is

empty.

(6) GetItem

Is used to retrieve an item that is unique to the user, it uses the user’s email (primary key) in

order get the required database row. Then function retrieves one out of the 4 items bounded to

the user account (password, allergies, diet, history):

dynamodb = boto3.resource("dynamodb")
table_name = "LoginInfo"
table = dynamodb.Table(table_name)
response = table.get_item(

Key={
'email':str(event['login'])

},
ConsistentRead=True

)
item = response['Item']
attribute_value = item.get(event['item'])
return {'status' : True, 'item' : attribute_value}

(7) UpdateAllergy / UpdateDiet

This function is very similar to the UpdateHistory function, and does require in-depth

explanation. The only difference is that the function contains the condition, as we also want

availability to remove and add allergy:

if(event['action'] == 'delete'):
item[array_field_name].remove(event['allergy'])

if(event['action'] == 'add'):
item[array_field_name].append(event['allergy'])

Action parameter is passed into the JSON format, and action to the database are

performed according to that parameter. If parameter is invalid or not specified, then no changes

are made to the database.

(8) Fetch Image

This function allows to create the link that will point to the image on the S3 instead of

downloading the image and storing it into the web server. This approach allows for easier and

faster render of the pages that use a lot of pictures that need to be displayed. That is in the

example of the history page:

s3_client = boto3.client('s3')

try:

urls = []

for path in event['images']:

response = s3_client.generate_presigned_url(

'get_object',

Params={'Bucket': event["bucket"],

'Key': path},

ExpiresIn=3600)

urls.append(response)

Read the content of the response

return {'status' : True, 'images' : urls}

This call takes all of the paths of the images from which the links must be created, the order is

preserved and this way the history is still going to be ordered by the date of creation.

3.3.3 Mobile App Development

When designing the Ingredient Lens mobile application, the goal was to translate all the

features and functionality of the website into a pocket-sized format. Having access to Ingredient

Lens on the go could be very useful, for instance if one is deciding what foods to buy at the

supermarket. It would be inconvenient if users needed to transfer photos taken with a phone over

to a desktop computer before they could use the website.

The first question that needed to be answered was which platforms to support. Both iOS

and Android are popular mobile operating systems. All members of the development team,

however, use Apple devices. There was concern about not being able to properly test the app on

Android. Luckily, there are tools that circumvent the issue and streamline the development

process. To reach the most users, the decision was made to develop a cross-platform application.

One tool used early on was Expo Snack. Snack is a website that allows users to write

code on the left-hand side of the screen and see their mobile app update on the right-hand side in

real time. Users can import their GitHub repositories with the click of a button. It also has

options to simulate both iOS and Android devices. This was very useful in the beginning stages,

but as the codebase got larger, Snack encountered issues with not being able to import certain

dependencies. Without them, the simulated app seen on Snack began to deviate from what the

real app would look like on an actual device where everything is properly imported. Thus, the

development team began to move away from Snack.

That is where Expo Go came in. Created by the same company that made Snack, Go

takes a different approach to mobile app development. Go itself is a free mobile app which

anyone can download. On a desktop, with one’s workspace properly configured, a developer can

run the code “npx expo start” to generate a QR code. Scanning this code with the same mobile

device that Go is installed on links the workspace to the device, allowing Go to perform the same

function as Snack. In other words, Go will open automatically and run the code for the mobile

app, allowing developers to test their app on a real mobile device, with the app updating in real

time as changes are made.

Initially, some problems were encountered trying to get Go properly set up. It seemingly

refused to cooperate. Sometimes it would not load at all. Other times it would load, but touch

input would be ignored. After some troubleshooting, the app began functioning as intended.

Using Go greatly expedited development of the Ingredient Lens mobile app despite the initial

hiccups. With that, the team was finally able to focus on the mobile app’s features.

The app was coded using React.js. At first, the plan was to add buttons to the app's

homepage which users would tap on to travel to other pages. It worked well enough, but turned

out clunky and visually unappealing. So the buttons were scrapped and a Screen Navigator was

implemented. It added a top navigation bar to every screen of the app. This method of navigation

was easier to use, but lacking in customization options. The end result was very much function

over form. It was an improvement for sure, but the team knew that more could be done.

The final version of the app uses a Drawer Navigator. This is another form of navigation

menu that is much sleeker and less intrusive. Users open it by sliding their thumb from the left

edge of the screen to the right. The menu will then slide out, revealing a list of all screens in the

app. Those are Home, Login, Docs, Popular Dishes, Image Upload, and About. There is also a

Sign Out button for users who are logged in. The Tell a Friend button was initially going to link

to social media, but was later removed. Drawers are much more customizable, allowing the team

to implement a white and green color scheme which falls more in line with Ingredient Lens

branding. Each button also has a custom icon which corresponds to the purpose of each screen.

Figure 15: The Drawer Navigator menu

Lastly, each screen was implemented. Home looks almost identical to the website’s

homepage, with an additional tutorial explaining how to use the app. Login and Sign Out allow a

user to login and sign out of their account. Docs has more information on how to use the app and

how it was created. Popular Dishes features a selection of images of food which the user can tap

to download. After saving an image to their device, the user can upload it on the Image Upload

screen to get a recipe and list of ingredients. The About page gives some information about the

development team and the project itself.

User Sessions:

On the mobile app, user sessions are managed through an AuthContext. This

AuthContext stores information for use across all app screens. Within the AuthContext, a context

is created using react createContext and an AuthProvider is created in order to make the context

available to all screens. This AuthProvider is then used to wrap the whole App.

AuthContext.js:

import React, { createContext, useState, useEffect } from 'react';
import AsyncStorage from '@react-native-async-storage/async-storage';

// 1. Create Context
export const AuthContext = createContext();

// 2. Provider Component
export const AuthProvider = ({ children }) => {
const [userToken, setUserToken] = useState(null);

const login = (token) => {
setUserToken(token);
AsyncStorage.setItem('userToken', token);
console.log(userToken);
console.log("logged in");
}

const logout = () => {
setUserToken(null);
AsyncStorage.removeItem('userToken');

console.log("logged out");
}

const isLoggedIn = async () => {
try {
let userToken = await AsyncStorage.getItem('userToken');
setUserToken(userToken);
} catch(e) {
console.log('isLoggedIn error');
}
}

useEffect(() => {
isLoggedIn();
}, []);

return (
<AuthContext.Provider value={{login, logout, userToken}}>
{children}
</AuthContext.Provider>
);
};

App.js:

import { AuthProvider} from './src/AuthContext.js';

import AppNav from './src/Navigation/AppNav.js';

export default function App() {

return (
<AuthProvider>
<AppNav />
</AuthProvider>
);

}

When a user logs in, a JWT is generated through the expo-jwt library, which is then

stored in a useState in the AuthContext. In order to generate JWTs in React Native, we had to

find an alternative library to the base jwt library since React Native doesn’t come equipped with

the crypto library. Along with being stored in the context, the token is also stored in React

Native’s AsyncStorage which stores information in a cookie-like state for use everytime the user

opens the app until they logout. When the token exists in AsyncStorage, the user gains access to

a new navigation drawer that gives them access to their user settings and the sign out button.

This token is also used to retrieve their dietary restrictions and allergies from the database for use

in recipe generation.

4.Conclusion and Future Work

In this project, we created Ingredient Lens. Ingredient Lens is an AI-based application

that allows the user to upload a picture of a dish. Then it recognizes the dish in the photo and

outputs a recipe on how to make it. It was implemented on a website using a combination of

AWS Services, React JS, the OpenAI API, Python code, NextUI, and Next.js. It was also

implemented on mobile using React Native and Expo.

When creating Ingredient Lens, our vision was to create an application that would help

users learn to cook dishes they have never cooked before, exposing them to a wide range of

cooking skills and ingredients and increasing their overall knowledge in the kitchen. This vision

was carried out by providing a simple way for users to generate simple recipes based on dishes

they’ve seen rather than going through the struggle of finding a good one online.

In the future, we plan to expand the capabilities of Ingredient Lens by adding new

features. Some of the additional improvements can be the custom-trained or fine-tuned model,

which would have greater recognition accuracy. While a lot of effort was made to create a

complete prototype of the mobile app, the final goal would be to deploy it on all mobile

platforms for users to use and test the beta version of the project. In addition, we are looking

forward to further personalize the user experience with potentially implementing the ranking

system, where users can rank how easy or hard the recipe was and whether or not the dish is

aligned to the user’s needs. This approach might require finetuning and adding new features to

the LLM model which we will look at in the future. Also, some of the information tied to the

user’s account can be more adjustable. Information such as the user's age, sex, and background

can severely impact their preferences in recipes. It would be a great opportunity to explore the

possibilities of using those parameters to impact the generated recipes.

References

[1] “Artificial Intelligence,” Oxford English Dictionary,
https://www.oed.com/dictionary/artificial-intelligence_n?tab=factsheet&tl=true (accessed
Sep. 29, 2023).

[2] “What is Computer Vision?,” IBM, https://www.ibm.com/topics/computer-vision
(accessed Sep. 25, 2023).

[3] G. Boesch, “Image recognition: The basics and use cases (2023 guide),” viso.ai,
https://viso.ai/computer-vision/image-recognition/ (accessed Sep. 25, 2023).

[4] “What is Amazon Rekognition?,” Amazon,
https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html (accessed Sep. 24, 2023).

[5] “What is Amazon Rekognition Custom Labels?,” Amazon,
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/im-metrics-use.html
(accessed Sep. 25, 2023).

[6] ChatGPT in Python for Beginners - Build A Chatbot. The AI Advantage, 2023.

[7] “What is AWS,” Amazon, https://aws.amazon.com/what-is-aws/ (accessed Sep. 29,
2023).

[8] “Amazon S3”, Amazon, https://aws.amazon.com/s3/ (accessed Sep. 23 2023)

[9] “What is a large language model?,” Elastic,
https://www.elastic.co/what-is/large-language-models#how-do-large-language-models-w
ork (accessed Sep. 29, 2023).

[10] M. Ruby, “How ChatGPT works: The Model Behind the Bot,” Medium,
https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-1ce5fca96
286 (accessed Sep. 29, 2023).

